

Scheidet bis zu 99 % aller Flüssigkeits- und Feststoffpartikel ≥ 10 µm ab

Spezialtypen bieten auch kleinere Abscheideraten

Die Wahl des richtigen Gas-/Flüssigkeitsabscheiders kann eine besondere Herausforderungen darstellen.

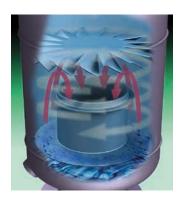
Die Anwendungsspezialisten von Eaton stehen Ihnen bei jedem Schritt zur Verfügung – von der Auswahl über die Installation bis hin zur Inbetriebnahme.

Dampf

Gas-/Flüssigkeitsabscheider von Eaton, die vor Dampfturbinen installiert sind, schützen die Turbinenblätter vor der erosiven Wirkung von Nassdampf, Rohrablagerungen und anderen schadenverursachenden Feststoffen. Sind sie in Dampfverteilungsleitungen installiert, gewährleisten sie, dass der Dampf, der in die Wärmetauscher, Druckregelventile, Temperaturregler, Messgeräte und andere teure Prozessausrüstung gelangt, sauber und trocken ist.

Druckluft

Ist ein Gas-/Flüssigkeitsabscheider von Eaton einem Zwischen- oder Nachkühler nachgeschaltet, scheidet er kondensierte Flüssigkeit ab, die andernfalls in aufeinanderfolgenden Verdichtungsstufen oder nachfolgenden Prozessen Schäden verursachen würde. Abscheider werden häufig verwendet, um schadenverursachende Verunreinigungen in Primärluftleitungen abzuscheiden, die zu Anlagenteilen wie Luftkupplungen, Luftdüsen und Gerätschaften, die für Spritzlackierungen verwendet werden, führen. Sie eignen sich perfekt für lange Rohrleitungen und dort, wo es zu großen Temperaturunterschieden kommt. Die Abscheider sind auch bei der Feuchtigkeitsabscheidung von Kältetrockner-Paketen sehr effizient.


Kompromitiertes Gas

Gas-/Flüssigkeitsabscheider von Eaton, die in Verbindung mit Zwischen- und Nachkühlern installiert werden, sind besonders effizient bei der Abscheidung von Öl, Teer, Wasser und anderen schadenverursachenden Verunreinigungen.

Die einzigartige Wirbelbegrenzungsplatte (Vortex Containment Plate, VCP) verbessert die Effizienz des Abscheiders – nur von Eaton

Herkömmliche Abscheider arbeiten oft nicht mit der höchstmöglichen Leistung, da die abgeschiedene Flüssigkeit bei normalen und hohen Durchflussraten wieder eingetragenen wird. Die einzigartige Wirbelbegrenzungsplatte von Eaton verhindert, dass bereits abgeschiedene Flüssigkeit und Partikel auch bei hohen Durchflussraten wieder vom Gasstrom mitgerissen werden können. Die VCP besteht aus sorgfältig platzierten Ringen, die die abgeschiedene Flüssigkeit von der Wirbelwirkung im Abscheider abschirmen und gleichzeitig die Flüssigkeit zum Abscheiderablass leiten. Die verwirbelten Luft- und Gasströme werden von der Flüssigkeit abgeschirmt und sie kann nach der Trennung nicht wieder eingetragen werden. So wird eine erneute Verunreinigung nach der Abscheidung verhindert. Die Konstruktion der VCP ist extrem robust und muss praktisch nicht gewartet werden.

Finden Sie den besten Gas-/Flüssigkeitsabscheider von Eaton für jeden Anwendungsbereich

Typ T

Die beliebte Wahl für die meisten Anwendungen

Typ TS

Für Anwendungen mit überdurchschnittlich hoher Flüssigkeitsbelastung

Typ TF und 31-LSF

Zweistufiges System scheidet Tropfen größer als 0,3 µm ab

Typ R

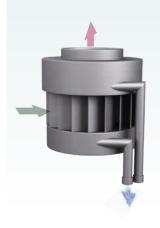
Für Anwendungen mit Flüssigkeitsstößen

Typ L

Eignet sich durch die zehn verschiedenen Rohrleitungskonfigurationen für die meisten Anwendungen

Typ CLC

Scheidet Verunreinigungen bis zu 4 μ m ab, doppelt so effizient wie andere Abscheider


Typ DTL

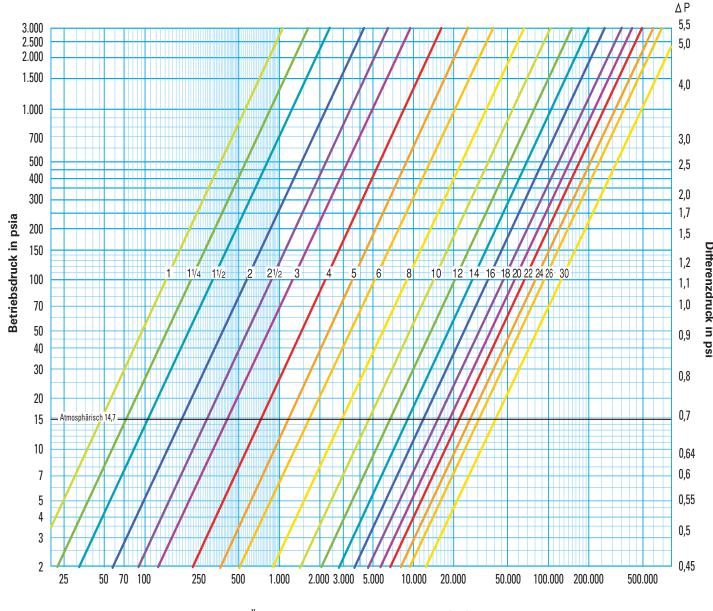
Für Anwendungen mit überdurchschnittlich hoher Feststoffbelastung

Typ I

Kann in Tanks, Dampftrommeln und anderen Behältern installiert werden

Typ 40

Scheidet Wasser und Öl aus Abluft ab, reduziert den Wartungsaufwand für Dächer und spart Kesselkondensat

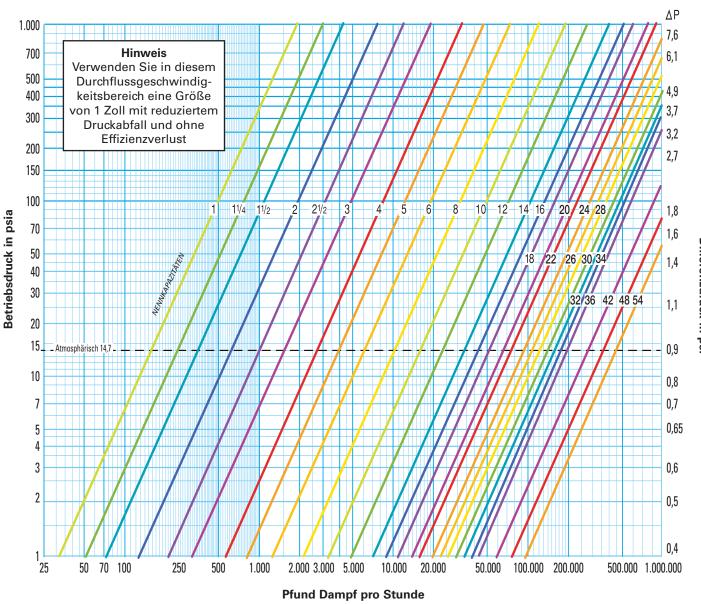

Typ AC/ACN

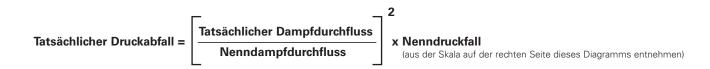
Kondensatableiter speziell für Abscheider entwickelt; alle internen Elemente aus Edelstahl

Diagramm: Luftdurchflusskapazität

Die Werte im Diagramm stellen den maximal empfohlenen Luftdurchfluss in Norm-Kubikfuß pro Minute durch herkömmliche Abscheider dar. Das Diagramm basiert auf SCFM (Kubikfuß Luft pro Minute gemessen bei Standardbedingungen von 0 bar und 16 °C). Wenn eine der Betriebsbedingungen von diesen abweicht, wenden Sie sich an Eaton.

Äquivalenter Luftdurchfluss SCFM (Qc)


Umrechnungsfaktoren:


 $1 \text{ SCFM} = 1.7 \text{ m}^3/\text{h}$

1 psi = 0,069 bar

Diagramm: Kapazität für Durchfluss von Sattdampf

Die Werte im Diagramm stellen den maximal empfohlenen gesättigten Dampfdurchfluss in Pfund pro Stunde durch herkömmliche Abscheider dar. Das Diagramm basiert auf SCFM (Kubikfuß Luft pro Minute gemessen bei Standardbedingungen von 0 bar und 16 °C). Wenn eine der Betriebsbedingungen von diesen abweicht, wenden Sie sich an Eaton.

Umrechnungsfaktoren:

 $1 \text{ SCFM} = 1.7 \text{ m}^3/\text{h}$

1 psi = 0,069 bar

1 Pfund = 0.45 kg

TECHNISCHE INFORMATIONEN

Gas-/Flüssigkeitsabscheider

Temperaturkorrekturfaktor

Temp.	°F (°C)	Faktor
-20	(-28,9)	0,904
-10	(-23,3)	0,917
0	(-17,8)	0,929
10	(-12,2)	0,941
20	(-6,7)	0,953
30	(-1,1)	0,965
40	(4,4)	0,977
50	(10,0)	0,989
60	(15,6)	1,000
70	(21,1)	1,012
80	(26,7)	1,023
90	(32,2)	1,034
95	(35,0)	1,040
100	(37,8)	1,046
105	(40,6)	1,051
110	(43,3)	1,057
120	(48,9)	1,068
130	(54,4)	1,079
140	(60,0)	1,090
150	(65,6)	1,101
160	(71,1)	1,112
170	(76,7)	1,121
180	(82,7)	1,133
190	(87,8)	1,143
200	(93,3)	1,154
250	(121,1)	1,206
300	(148,9)	1,256
400	(204,4)	1,353
500	(260,0)	1,445
550	(287,8)	1,490
600	(315,6)	1,533
700	(371,1)	1,618
800	(426,7)	1,701
900	(482,2)	1,780
1000	(537,8)	1,858

Spezifische Dichtekorrekturfaktoren

Gas	Symbol	M.W.	G	F_{g}
Wasserstoff	H ₂	2,0	0,069	0,344
Helium	He	4,0	0,138	0,452
Synthesegas	75 % H ₂ 25 % N ₂	8,5	0,295	0,611
Kokereigas	-	11,0	0,379	0,679
Methan*	CH ₄	16,0	0,551	0,788
Ammoniak	NH ₃	17,0	0,586	0,808
Dampf (Wasserdampf)	H ₂ 0	18,0	0,621	0,826
Erdgas*	75 % CH ₄ 25 % N ₂	-	-	-
Acetylen	C_2H_2	26,0	0,897	0,957
Stickstoff	N ₂	28,0	0,950	0,986
Kohlenmonoxid	CO	28,0	0,950	0,986
Luft	-	29,0	1,00	1,00
Rauchgas	81 % N ₂ 19 % CO ₂	31,0	1,08	1,027
Sauerstoff	02	32,0	1,10	1,039
Argon	A	39,9	1,38	1,136
Propan	C ₃ H ₈	44,1	1,52	1,182
Kohlenstoffdioxid*	CO ₂	44,0	1,52	1,181
Distickstoffmonoxid	N ₂ 0	44,0	1,52	1,181
Dimethylacetylen	C ₄ H ₆	54,1	1,86	1,284
Schwefeldioxid	SO ₂	64,1	2,21	1,374
Dichlor	Cl_2	70,9	2,45	1,431
Freon 12	CCI ₂ F ₂	120,9	4,17	1,770

^{*} Für Anwendungsbereiche mit Gasen (über 34 bar bei 93 °C) wenden Sie sich an Eaton, um festzustellen, ob ein zusätzlicher Korrekturfaktor für die Kompressibilität vorliegt.

Symbolschlüssel

F_g = Korrekturfaktor für die spezifischen Dichten

F_t = Korrekturfaktor für die Temperatur

G = Spezifische Dichte

MMSCFD = Millionen Norm-Kubikfuß pro Tag

MW = Molare Masse

P_a = Druck (psia), bei dem der Betriebsvolumenstrom gemessen wird

Q_a = Betriebsvolumenstrom – Norm-Kubikfuß pro Minute (ACFM))

Q_C = Durchflussrate - Norm-Kubikfuß pro Minute äquivalent zu Luft

Q sg = Durchflussrate - Norm-Kubikfuß pro Minute

> T = Betriebstemperatur (°F/°C)

T_a = Temperatur (°F/°C), bei der der Betriebsvolumenstrom gemessen wird

W = Durchflussrate - Pfund pro Stunde

Die Durchfluss-Diagramme von Eaton auf der vorherigen Seiten basieren auf SCFM (Kubikfuß Luft pro Minute, gemessen bei Standardbedingungen von 0 bar und 16 °C) bzw. Pfund Dampf pro Stunde. Wenn eine der Betriebsbedingungen von den oben genannten abweicht, müssen Korrekturfaktoren angewendet werden.

Um das Durchfluss-Diagramm für Anwendungen mit anderen Gasen oder unter anderen als den Standardbedingungen anwenden zu können, muss die folgende Gleichung für $\Omega_{\mathbb{C}}$ berechnet werden:

$$Q_c = Q_{sg} \times F_g \times F_t$$

Falls Q_{sg} nicht in der richtigen Form bereitgestellt wird, kann eine der folgenden Gleichungen verwendet werden, um die korrekte Durchflussrate zu bestimmen, die in die obige Gleichung eingefügt werden soll:

$$Q_{sg} = 6.3 \times W$$

$$Q_{sg} = \frac{35.7 \times Q_a \times P_a}{460 + T_a}$$

 Q_{sq} (nur Luft) = 0,218 × W

$$Q_{sg} = \frac{MMSCFD}{1440}$$

 $W = (Pfund Mol/Stunde) \times MW$

TECHNISCHE INFORMATIONEN

Gas-/Flüssigkeitsabscheider

Anwendungsdatenblatt

Name:		Datum:		
Titel:				
Unternehmen:				
Adresse:				
Stadt:		desland/Kanton:	PLZ:	
Telefon:	Fax:			
E-Mail:				
Produkte, an den	en Interesse besteht			
□ ТурТ	□ Тур I	☐ Typ R		
□ TypTS	□ TypTF	☐ Typ DTL	☐ Typ 31-LSF	
□ Тур L	☐ Typ CLC	☐ Typ 40	☐ Typ AC/ACN	
Anwendungspara	nmeter			
Anschlussgröße:	Zoll	mm		
Medium: □ Luft	☐ Dampf ☐ Erdgas	☐ Sonstiges		
Volumenstrom:	SCFM	m³/h	Nm³/h	
Massenstrom:	kg/h			
Molare Masse:				
Min. Betriebsdruck:		_barg		
Max. Betriebstemper	atur: °	PC .		
Präferenz für die Durc	chflusskonfiguration:	Vertikaler Durchfluss	☐ Horizontaler Durchfluss	
Auslegungsdruck des	Behälters:	_ barg		
Auslegungstemperat	ur:°C			
Max. zu entfernende	Flüssigkeit:	kg/h		
Erforderliche Endverk	oindungen: 🗆 Gewinde	☐ Flansch ☐ Schwei	ßende	
□ PN10 / 125#	# PN16 / 150# □ PN4	10 / 300# ☐ Sonstiges		
Konstruktionsmateria	ılien: □ Gusseisen □	C-Stahl		
☐ Sonstiges _				

Nordamerika

44 Apple Street Tinton Falls, NJ 07724 Gebührenfrei: 800 656-3344 (nur innerhalb Nordamerikas) Tel.: +1 732 212-4700

Europa/Afrika/Naher Osten Auf der Heide 2

53947 Nettersheim, Deutschland Tel.: +49 2486 809-0

Friedensstraße 41 68804 Altlußheim, Deutschland Tel.: +49 6205 2094-0

An den Nahewiesen 24 55450 Langenlonsheim, Deutschland Tel.: +49 6704 204-0

Großchina

No. 7, Lane 280, Linhong Road Changning District, 200335 Shanghai, China Tel.: +86 21 2899-3687

Asien-Pazifik 100G Pasir Panjang Road #07-08 Interlocal Centre Singapur 118523 Tel.: +65 6825-1620

Für weitere Informationen kontaktieren Sie uns per E-Mail unter filtration@eaton.com oder online unter www.eaton.com/filtration

unter www.eaton.com/filtration

② 2023 Eaton. Alle Rechte vorbehalten. Sämtliche Handelsmarken und eingetragenen Warenzeichen sind Eigentunder jeweiligen Unternehmen. Sämtliche in diesem Prospekt enthaltenen Informationen und Empfehlungen hinsichtlich der Verwendung der hierin beschriebenen Produkte basieren auf Prüfungen, die als zuverlässig angesehen werden. Dennoch obliegt es der Verantwortung des Benutzers, die Eignung dieser Produkte für seine eigene Anwendung festzustellen. Da die konkrete Verwendung durch Dritte außerhalb unseres Einflussbereiches liegt, übernimmt Eaton keinerlei ausdrückliche oder stillschweigende Gewährleistung für die Auswirkungen einer solchen Verwendung oder die dadurch erzielbaren Ergebnisse. Eaton übernimmt keinerlei Haftung in Zusammenhang mit der Verwendung dieser Produkte durch Dritte. Die hierin enthaltenen Informationen sind nicht als absolut vollständig anzusehen, da weitere Informationen notwendig oder wünschenswert sein können, falls spezifische oder außergewöhnliche Umstände vorliegen, beziehungsweise aufgrund von geltenden Gesetzen oder behördlichen Bestimmungen.

DF 06-2023

